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Abstract. To improve the prediction for the future air quality trends, the demand for low-cost sensor-based air quality gird 8 

monitoring is growing gradually. In this study, a low-cost multi-parameter air quality monitoring system (LCS) based on different 9 

machine learning algorithm is proposed. The LCS can measure particulate matter (PM2.5 and PM10) and gas pollutants (SO2, NO2, 10 

CO and O3) simultaneously. The multi-dimensional multi-response prediction model is developed based on the original signals of 11 

the sensors, ambient temperature (T) and relative humidity (RH), and the measurements of the reference instrumentations. The 12 

performance of the different algorithms (RF, MLR, KNN, BP, GA-BP) with the parameters such as determination coefficient R2 13 

and Root Mean Square Error (RMSE) are compared and discussed. Using these methods, the R2 of the algorithms (RF, MLR, KNN, 14 

BP, GA-BP) for the PM is in the range 0.68 - 0.99; the mean RMSE values of PM2.5 and PM10 are within 3.96 - 16.16 μgm-3 and 15 

7.37 - 28.90 μgm-3, respectively. The R2 of the algorithms (RF, MLR, KNN, BP, GA-BP) for the gas pollutants (O3, CO and NO2) 16 

is within 0.70 – 0.99; the mean RMSE values for these pollutants are 4.06 - 16.07 μgm-3, 0.04 - 0.15 mgm-3, 3.25 - 13.90 μgm-3, 17 

respectively. The R2 of the algorithms (RF, KNN, BP, GA-BP, except for MLR) for SO2 is within 0.27 - 0.97, and the mean RMSE 18 

value is in the range 1.05 - 3.22 μgm-3. These measurements are consistent with the national environmental protection standard 19 

requirement of China, and the LCS based on the machine learning algorithms can be used to predict the concentrations of PM and 20 

gas pollution. 21 

1 Introduction 22 

The development along with increased population and urbanization brings disadvantages, such as decreasing air quality and impact 23 

on public and individual health (Ioannis et al., 2020; Khreis et al., 2022; Singh et al., 2021). Among the atmospheric pollutants, 24 

the primary pollutant is fine particulate matter, which affects the respiratory system and cardiac activity of humans. The secondary 25 

pollutants are SO2, CO, NOx, and O3, which also induce disease or chronic poisoning. To improve the understanding of air pollution 26 

exposure and to predict future air quality trends(Zimmerman et al., 2018), air quality assessment and forecasting are the essentials. 27 

The conventional air quality monitoring instrumentations are high cost, which has limited the spatial coverage of the monitoring 28 

stations(Zimmerman et al., 2018). The development and applications of the low-cost commercially available sensor-based air 29 

quality monitoring system (LCS) would considerably reduce both installation and maintenance costs (Spinelle et al., 2017). The 30 

larger spatial density of the air quality grid monitoring network becomes possible, which would plays an important role in 31 

monitoring pollution trend, locating of pollution source, supporting environmental management(Zhao et al., 2019) and support 32 

better epidemiological models(Khreis et al., 2022; Zimmerman et al., 2018). These demands promote the LCS growing 33 

gradually(Cui et al., 2021; Wang et al., 2016). 34 
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The LCS typically utilizes the electrochemical, metal oxide or light scattering sensors for gas-phase or particulate pollutants 1 

measurement, such as sulfur dioxide (SO2), nitrogen oxide (NO2), carbon monoxide (CO), ozone (O3), total volatile organic 2 

compounds (VOCs), and particulate matters (PM). These electrochemical and metal oxide sensors have intrinsic problems such as 3 

uneven quality, signal drift, temperature and humidity impacts, and gaseous cross-sensitivities (Spinelle et al., 2015, 2017; 4 

Zimmerman et al., 2018) (Brilli et al., 2020; Guo et al., 2020; Jiao et al., 2016; Magi et al., 2020). For example, limited by the poor 5 

selection performance, the NO2 electrochemical sensor also undergo redox reactions in the presence of O3 gaseous pollutants. The 6 

diffusion coefficient of the electrochemical sensor can be affected by temperature and relative humidity(Hitchman et al., 1997; 7 

Masson et al., 2015). The reagent of the electrochemical sensor is consumed over time, which affects the stability of the sensor. 8 

These features of the sensors have historically been poorly addressed by laboratory calibrations, limiting the utility for air quality 9 

monitoring (Zimmerman et al., 2018).  10 

The de-convolving of cross-sensitivity effect and stability on sensor performance is complex, and this has been increasing interest 11 

in multifarious algorithms for low-cost sensor calibration. The linear or multivariate linear calibration models (Alexopoulos, 2010; 12 

Khreis et al., 2022; Zoest et al., 2019), have been developed and studied to overcome these sensors weaknesses. The R2 performance 13 

when measuring NO2 and PM2.5 is less than 0.58(Khreis et al., 2022) with mixed results after the calibration and generally 14 

deteriorating performance. The accurate and precise calibration of low cost gas sensors still represents a challenge in ambient air 15 

quality monitoring. High-dimensional multi-response calibration models(Alexopoulos, 2010) are built for CO, NO, NO2, and O3, 16 

with the determination coefficient R2 within 0.39–0.88 between the models result and the reference monitors results. The artificial 17 

neural network (ANN) calibration model has the intelligence to process nonlinear data with self-learning and self-memory(Spinelle 18 

et al., 2015), which does not need an accurate mathematical model and has been widely utilized in data analysis to meet 19 

computational intelligence requirements(Amuthadevi et al., 2021; Janabi et al., 2021). The ANN has been used in calibration 20 

models for measuring ozone or nitrogen oxide(Esposito et al., 2016; Spinelle et al., 2015). For example, the ANN calibration model 21 

was used to calibrate O3 and the uncertainty could meet the European data quality objectives; however, meeting these objectives 22 

for NO2 remains a challenge. Dynamic neural network calibrations of NO2 sensors was demonstrated with the mean absolute error 23 

less than 2 ppb; however, the same performance for O3 was not observed. Furthermore, the model for calibration performance for 24 

measuring NO, NO2, and O3 was tested on 4 weeks of data. Random-forest-based machine learning algorithm was also used to 25 

improve the calibration strategies of low-cost sensors(Zimmerman et al., 2018). The average mean absolute error on the testing 26 

data set from the random forest models was 38 ppb for CO (14% relative error), 10 ppm for CO2 (2 % relative error), 3.5 ppb for 27 

NO2 (29 % relative error), and 3.4 ppb for O3 (15 % relative error), and Pearson r versus the reference monitors exceeded 0.8 for 28 

most units. Multiple linear regression(Ionascu et al., 2021) based temperature and humidity correction and ANN based calibration 29 

shown the potential for significant further improvement for leave one out cross validation(Ali et al., 2021). An integrated genetic 30 

programming dynamic neural network model was used to accurately estimate the carbon monoxide and nitrogen dioxide pollutant 31 

concentrations from the multi-sensor measurement data(Davut et al., 2022). However, these calibrations have only been tested on 32 

a short measurement period and small number of sensor matrix, each containing one sensor per pollutant (Cross et al., 2017; 33 

Esposito et al., 2016; Spinelle et al., 2015), not have been utilized to evaluate and predict the concentration values of multi 34 

pollutants simultaneously, such as PM2.5, PM10, SO2, NO2, CO and O3. 35 

In this work, the LCS is developed to measure PM2.5, PM10, SO2, NO2, CO and O3 simultaneously. Taking the original electronic 36 

signals of the sensors as input and measurements obtained by the reference instrumentations as output, five calibration strategies 37 

are applied and contrasted. The calibration model used are multivariate linear regression (MLR)(Alexopoulos, 2010), genetic-38 

algorithm-back-propagation neural (GA-BP) network (Ning et al., 2019; Wang et al., 2019), BP neural network(Xu et al., 2021), 39 

K Nearest Neighbor (KNN)(Zhao et al., 2021) and random-forest (RF)(Breiman, 2001; Liu et al., 2012) based machine learning 40 
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algorithm. The measurement is implemented in the real-world conditions almost a 12-month period (1 March 2021 and 28 February 1 

2022) spanning multiple seasons and a wide range of meteorological conditions to ensure calibration model robustness. The 2 

performance of the different algorithms with the parameters such as R2 and Root Mean Square Error (RMSE) are compared and 3 

discussed.  4 

The rest of this paper is organized as follows. The measurement setup is described in section 2. The principles of the calibration 5 

strategies are presented in section 3. The results and discussion are shown in section 4. The conclusion is drawn in section 5. 6 

2 Measurement setup 7 

This section describes the measurement site and data collection, schematic block of the LCS, and the reference instrumentation. 8 

The low-cost here is defined as below 150 dollars per pollutant, commercial availability and low maintenance. The sensors typically 9 

utilize electro-chemical signal and scattering light intensity for gas-phase pollutants (SO2, NO2, CO and O3) and particle pollutants 10 

(PM2.5, PM10) measurement. 11 

2.1 Measurement site and data collection 12 

 13 
Figure 1. Temperature and relative humidity ranges during the measurement period (1 March 2021 and 28 February 2022) 14 

 15 

Measurements for PM2.5, PM10, CO, SO2, NO2 and O3 were made continuously between 1 March 2021 and 28 February 2022, 16 

which were used as the start and end dates for the analyses. The measurement was made on the 30 Yaochang Streat, Zhongyuan 17 

District, Zhengzhou City, Henan Province, where there was an independent reference monitoring system for PM2.5, PM10, CO, SO2, 18 

NO2 and O3 measurement. The LCS was mounted at a consistent height with the reference monitoring system. The data collection 19 

interval of the LCS and reference instruments was 5 minutes. During the measurement period, the ranges of the ambient 20 

temperature and relative humidity separately were -5℃ to 50℃ and 10% to 98%, shown in Figure 1. The ambient temperature 21 

increased, decreased and fluctuated separately within 1 March 2021 and 30 June 2021, 1 July 2021 and 31 October 2021, 1 22 

November 2021 and 28 February 2022, dividing the whole measurement period into three segments. 23 
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2.2 Schematic block of LCS 1 
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Figure 2. Schematic block and site photo of the LCS. The left panel (a) is the schematic block of the LCS. The system control module can 3 
ensure the temperature stability of the heat tracing pipeline and thermo-tank through the heat tracing control module and thermostatic 4 
control module, respectively. The sampling cutter is used to filter particles larger than 10 μm. The sampling pump is utilized to deliver 5 
ambient air to the surface of the sensors. The right panel (b) is the site photo of the LCS. 6 

 7 

In this study, the LCS is developed by Hanwei Electronics Group Corporation, and its schematic block diagram is shown in Figure 8 

2. The LCS uses the commercially available particulate matter sensor and electrochemical sensors from Cubic Ltd and Alphasense 9 

Ltd, respectively. The particulate matter sensor device is the laser diode (LD) based particle sensor, using a spectrophotometer to 10 

measure the particle scattering light intensity. The PM sensor device (PM3006) can measure size dependent PM2.5 and PM10 11 

concentration of the particles in the size range of 0.3 to 10 μm. The gas pollution (SO2\NO2\O3\CO) sensor used are with 4 12 

electrodes (i.e. reference, worker, counter and auxiliary electrodes), where the auxiliary electrode is not exposed to the target 13 

analyte to account for changes in the sensor baseline signal under different meteorological conditions(Mead et al., 2013). 14 

The electrochemical sensor outputs are measured using electronic circuitry designed by Hanwei and optimized for signal stability. 15 

The circuitry is developed with custom electronics to drive the device, multiple stages of filtering circuitry for specific noise 16 

signatures, and an analog-to-digital converter for measurement of the conditioned signal.  17 

Due to the redox reaction on the anode and the cathode of the electrochemical sensor, the movement of charge between the 18 

electrodes produces a current proportional to the analyte reaction rate, which can be used to determine the analyte 19 

concentration(Mead et al., 2013) and the sensor whether working effectively. The linearity of the gas sensors of SO2, NO2, CO and 20 

O3 is examined in laboratory to evaluate the performance of the sensors before used in real-world conditions.  21 

In laboratory, the sensors were tested under steadily increased different single standard gas concentration, which was from 0 - 5 22 

mgm-3 for CO sensor, 0 - 0.2 mgm-3 for NO2, 0 - 1.1 mgm-3 for O3 and 0 - 1.4 mgm-3 for SO2. The electrical output signals of the 23 

gas pollution sensors, proportional to the concentrations of the single standard substances, shown in Figure 3, verified the sensor 24 

working properly and effectively and could be applied to the LCS.  25 
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 1 
Figure 3. Electrical output signals versus single standard gas concentration in laboratory condition. The left panel (a) and right panel (b) 2 
represent the proportional relations between CO and O3 sensors, SO2 and NO2 sensors, respectively. The duration of each measurement 3 
is about 30 minutes. 4 

 5 

However, even with an auxiliary electrode, electrochemical sensors may insufficiently account for the impacts of temperature and 6 

relative humidity. With the purpose to eliminate the influence of the external environment on the sensor as much as possible, the 7 

particles flow through a sampling cutter and heat-tracing pipeline to the particulate matter sensor, and the gaseous pollutants are 8 

pumped to the electrochemical sensors, which are secured in a thermo-tank. The temperature values of the heat-tracing pipeline 9 

and thermo-tank can be maintained at 60 ℃±2 ℃ to reduce the influence of relative humidity and  25 ℃±2 ℃(Wei et al., 2018) 10 

to keep the sensor operating at a stable temperature, respectively. 11 

The measurement results of particulate matter sensor and gas pollution sensors, transmitted to the system control module through 12 

the data buses, are directly displayed on the local display module and wirelessly transmitted to the corresponding online server 13 

through the transmission module. As the uni-variate linear models does not in-corporate any cross-sensitivities to other pollutants 14 

or any nonlinearities in the response, we attempt to using the sensor electronic results as the input and the reference measurements 15 

as the output, to build multi-dimensional multi-response prediction models to de-convolve the effects of cross-sensitivity and 16 

stability on sensor performance utilizing MLR, RF, KNN, BP and GA-BP calibration models.  17 

2.3 Reference instrumentation 18 

In order to reduce the adsorption effect on particle matter and gaseous pollutants, the reference measurements are made on ambient 19 

air continuously drawn through Teflon fluorinated ethylene propylene (FEP)(Wei et al., 2018) tubing with a six-port stainless steel 20 

manifold for flow distribution to the gas analyzers and particulate monitors(Mead et al., 2013). It should be pointed out that the 21 

LCS was mounted at a consistent height with the reference monitoring system during the measurement period. 22 

The reference ambient particulate monitor 5014i, which uses beta attenuation of the ambient particulate deposited onto a filter tape, 23 

is applied to measure the mass concentration of suspended and refined particulates. The reference NO-NO2-NOX monitor 42i, using 24 

the linear proportional of the chemi-luminescence reaction of NO and O3 after NO2 transformed into NO, is utilized to measure the 25 

NO2 concentration. The SO2 reference analyzer is 43i using the ultraviolet light (which is emitted as the excited SO2 molecules 26 

decay to lower energy states) intensity proportional to the SO2 concentration. The CO reference monitor is 48i utilizing the principle 27 

that CO absorbs infrared radiation at a wavelength of 4.6 μm and the infrared absorption can be transformed to be proportional to 28 

the CO concentration. The 49i O3 analyzer operates on the principle that O3 molecules absorb UV light at a wavelength of 254 nm, 29 

and the absorption intensity of the UV light is directly related to the ozone concentration. All these reference monitors are produced 30 
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by Thermo Fisher Scientific Inc. The time interval for all reference measurements is 5 minutes. The reference gas and particulate 1 

analyzers are checked and calibrated weekly using calibration gas mixtures to correct the baseline drift.  2 

3 Principles 3 

This section describes the principles of the calibration methods, such as MLR, BP, GA-BP, KNN and RF, and the metrics for 4 

performance evaluation. The calibration models are constructed with the sensors (i.e., PM2.5, PM10, CO, SO2, NO2 and O3 sensors.) 5 

electronic results as the input and the reference measurements as the output. 6 

3.1 Calibration methods 7 

3.1.1  Multiple linear regression model 8 

After the data collected by the LCS, the raw data should be preprocessed. The PM3006 particulate matter sensor can measure 9 

particle counters in the size range of 0.3 to 10 μm. By using the particle counters x0.5, x1.0, x2.5, x5.0 and x10.0 of the sensors, listed in 10 

Table 1, the measured particle number concentration is converted to PM mass concentrations in the PM2.5 and PM10 size fractions.  11 

 12 
Table 1. Size range of the particulate matter sensor. The sensor can measure particles with the size range of 0.3~0.5 μm, 0.5~1.0 μm, 13 
1.0~2.5 μm, 2.5~5.0 μm and 5.0~10 μm, simultaneously. The corresponding particle counters are expressed as x0.5, x1.0, x2.5, x5.0 and x10.0, 14 
respectively. 15 

Range (μm) 0.3~0.5 0.5~1.0 1.0~2.5 2.5~5.0 5.0~10.0 

Particle counter x0.5 x1.0 x2.5 x5.0 x10.0 

 16 

Taking the particle counters, listed in Table 1, as input and the concentrations Ypm2.5 and Ypm10 of PM2.5 and PM10 measured by 17 

5014i as output, the multivariate linear regression (MLR) models(Alexopoulos, 2010; Zoest et al., 2019) is built. Due to the 18 

previously established influence of  ambient temperature (T) and relative humidity (RH) on sensor response(Jiao et al., 2016; 19 

Masson et al., 2015), the multi-dimensional multi-response preprocessing and prediction models can be written as Eq. (1).  20 

{
Ypm2.5=w1_pm2.5∙x0.5 + w2_pm2.5∙x1.0 + w3_pm2.5∙x2.5+w4_pm2.5∙T+w5_pm2.5∙RH + bpm2.5                                            

Ypm10=w1_pm10∙x0.5 + w2_pm10∙x1.0 + w3_pm10∙x2.5+w4_pm10∙x5.0+w5_pm10∙x10.0+w6_pm10∙T+w7_pm10∙RH + bpm10

,                          (1)    21 

The equation (1) can be simplified as, 22 

{
Ypm2.5=Wpm2.5∙Xpm2.5 + bpm2.5

Ypm10=Wpm10∙Xpm10 + bpm10

,                                                                                                                                                     (2) 23 

Where Wpm2.5= [w1_pm2.5, w2_pm2.5, w3_pm2.5, w4_pm2.5, w5_pm2.5] and Wpm10= [w1_pm10, w2_pm10, w3_pm10, w4_pm10, w5_pm10, w6_pm10, w7_pm10] 24 

are the corresponding weight coefficients; the X'pm2.5 = [x0.5, x1.0, x2.5, T, RH] and X'pm10 = [x0.5, x1.0, x2.5, x5.0, x10.0, T, RH] represent 25 

the input particle counters and values obtained from the PM sensor, the temperature sensor and humidity sensor; the bpm2.5 and 26 

bpm10 are the intercept values of the model. 27 

Due to the poor selection performance and cross interference of the electro-chemical sensors response, the output values from each 28 

sensor using net sensor response to the target analyte, such as O3, NO2, SO2, concentration measured by the inference monitor are 29 

used to build the MLR model. The CO gaseous pollution is also one of the criteria pollutants, which is must to be measured in 30 

China. Thus, the multi-dimensional multi-response preprocessing and prediction model for the 4 gas pollutions, T and RH can be 31 

written as Eq. (3). 32 
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{
 
 

 
 YSO2

= w11∙xSO2
+w12∙xNO2

+w13∙xCO+w14∙xO3
+w15∙T+w16∙RH+bSO2

YNO2
= w21∙xSO2

+w22∙xNO2
+w23∙xCO+w24∙xO3

+w25∙T+w26∙RH+bNO2

YCO= w31∙xSO2
+w32∙xNO2

+w33∙xCO+w34∙xO3
+w35∙T+w36∙RH+bCO

YO3
= w41∙xSO2

+w42∙xNO2
+w43∙xCO+w44∙xO3

+w45∙T+w46∙RH+bO3

,                                                                                          (3) 1 

The equation (3) can be simplified as, 2 

Y[SO2, NO2, CO, O3]=Wgas∙Xgas + Bgas,                                                                                                                                                (4) 3 

Where Wgas= [

w11 w12 w13
w14 w15 w16

w21

w31

w22 w23
w24 w25

w32 w33
w34 w35

w26

w36

w41 w42 w43
w44 w45 w46

] is the corresponding weight coefficient; the Xgas =[xSO2
, xNO2

, xCO, xO3
, T, 4 

RH] is the convertor output values of the sensors through the electronic circuitries; the Bgas' = [bSO2
, bNO2

, bCO, bO3
] is the 5 

intercept value of the model. 6 

Hereto, the multi MLR models for the gas sensor and PM sensor are separately developed. The training data is used to calculate 7 

the model regression coefficient and intercept values, and the withheld testing data is utilized to evaluate the performance of the 8 

model performance. 9 

3.1.2  BP neural network model 10 

The BP neural network algorithm is one of the most widely used ANN models. It is a multi-layer feed-forward network trained 11 

through an error back propagation algorithm by constantly adjusting the weight and intercept of the network. The feed-forward 12 

topological structure of the BP neural network model, shown in Figure 4, includes the input layer, hidden layer and output layer. 13 

With the purpose to avoid the numerical problems caused by the extreme values of polarization, eliminate the misleading effects 14 

for feature extraction and obtain the accurate estimation of pollutant concentrations(Janabi et al., 2021), the collected input sensor 15 

date XI and output date YO should be respectively normalized with min-max normalization to limit values in each dimension 16 

between 0 and 1(Hande et al., 2021).  17 
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 18 
Figure 4. Topological structure of BP neural network model. The up panel (a) is the feed-forward topological structure. The XI and YO 19 
are the input data and output data, respectively. The X'i and Y'i separately indicate the normalized items of X and Y. The wi1 and bi1, wj2 20 
and bj2 separately represent the weight value and intercept value of the hidden layer and output layer. The down panel (b) is equivalent 21 
to panel (a) to simplify the formulas. 22 

 23 

After the normalization process, the BP network can be established. To optimize the best parameters of the network, the number 24 

of hidden layer, the transfer functions of the layers, and the end conditions should be determined. If the parameters are inappropriate, 25 

the BP-model will be over trained or insufficient. In this study, a shallow structure with a single hidden layer is chosen, as extensive 26 
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testing did not show any noticeable improvement in calibration performance with deeper structure consisting of multiple hidden 1 

layers(Ali et al., 2021). This also reduced the complexity and the training time.  2 

3.1.3  Genetic algorithm-BP model 3 

In the traditional BP neural network, the initial weights and thresholds are randomly generated. The results often fall into a local 4 

minimum rather than a global minimum, and would lead to the distortion of the prediction result. In addition, the convergence 5 

speed of the BP neural network is usually slow. To solve these problems, the genetic algorithm (GA) (Liang et al., 2018) with BP 6 

algorithm is also used to avoid the inherent defects of BP algorithm. The GA method is essentially a direct search method that does 7 

not rely on specific problems and gradient information. It follows the survival and elimination rule of biological evolution, 8 

generates the following hypotheses by mutating and reconstructing the best existed hypothesis and makes it possible to solve the 9 

problem(Ning et al., 2019). Generally, the GA is used to find an optimal initial weight and a threshold value for the model, so that 10 

the model could converge in the direction of minimum value(Wang et al., 2019). The GA-BP hybrid algorithm is used to reduce 11 

the time for the BP neural network to adjust the weight and threshold itself and achieve the goal of improving work efficiency. 12 

3.1.4  K nearest neighbor model 13 

The k nearest neighbor (KNN) is also one of the simplest method for classification as well as regression problem(Kumar, 2015; 14 

Zhao and Lai, 2021). The KNN is a supervised method that uses estimation based on values of neighbors, which can automatically 15 

adapt to the supervised learning problems with arbitrary Bayes decision boundaries(Zhao and Lai, 2021). From the supervisor 16 

dataset, the KNN solution utilizes the values of given dependent variable yi to approximate the dependent variable y*, which is 17 

closest with respect to distance between their corresponding model parameters. For regression problem, the mean of the observed 18 

labels of k nearest neighbors of independent variable X is assigned to be the predicted label. In this study, the k is set to 10 with 19 

the performance having no obvious difference from other numbers. 20 

3.1.5  Random forest model 21 

The random forest (RF) model is used for solving regression or classification problems(Breiman, 2001; Liu et al., 2012). It works 22 

by constructing an ensemble of decision trees using a training data set; the mean value from that ensemble of decision trees is then 23 

used to predict the value for new input data(Zimmerman et al., 2018). With the purpose to establish a RF model, the maximum 24 

number of decision trees of the forest should be specified. Each tree is constructed using a bootstrapped random sample from the 25 

training data set. By considering a random subset of the possible explanatory variables with the strongest predictor of the response, 26 

the origin node of the decision tree can be split into sub-nodes.  The node splitting process is repeated until a terminal node is 27 

reached. The terminal node can be specified using the maximum number of sub-nodes or the minimum number of data points in 28 

the node. To illustrate the method, consider building a random forest model for one LCS using a single decision tree and a subset 29 

of 20490 data points to build a calibration model, shown in Figure 5. The RF model can predict data with variable parameters 30 

within the training range. Therefore, a larger and more variable training data set should create a better final model. To avoid missing 31 

any spikes during the training window, a 5-fold cross-validation approach(Zimmerman et al., 2018) is also used to maximize 32 

utilization of the training data set. This approach helps to minimize bias in training data selection when predicting new data and 33 

ensures that every point in the training window is used to build the model. 34 
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Figure 5. Simplified illustration of the RF with a single decision tree and a subset. The x[0], x[2], x[3] represent the CO, SO2 and O3 2 
pollutants. At the first split, points with normalized CO sensor signal ≤0.052 are sent to a terminal node; the remaining points go to the 3 
other splitting node. The Samples is the number of data points in each terminal node. The Value is the average in each terminal node. 4 

3.2 Metrics for performance evaluation 5 

To quantitatively compare the MLR, BP, GA-BP, KNN and RF model output to the reference monitor concentrations, the 6 

determination coefficient R2 and root mean square error (RMSE) (Janabi et al., 2021) are utilized. Where, the R2 is obtained as 7 

Eq. (5). 8 

R2=1-[∑ (y
i
-f

i
)
2n

i=1 ]/[∑ (y
i
-y̅)

2n
i=1 ],                                                                                                                      (5) 9 

Where yi and y̅ are the real-time data and mean data obtained by reference instrumentations, respectively. The fi is the model 10 

output data according to the model algorithm. The R2 reflects the fit degree between the model output data and the reference 11 

monitor measurement. The measurement results should meet the requirements of environmental standards of China(Jiao et al., 12 

2016). The RMSE measures how much error there is between the predicted values and the reference measurements, which is 13 

calculated by the following Eq. (6). 14 

RMSE =√
1

n
∑ (y

i,  p
- y

i
)
2n

i=1 ,                                                                                                                                                      （6） 15 

Where y
i, p

 and yi represent the ith model output data form the algorithm-based LCS system and the reference data from the 16 

reference instrumentations, the n is the number of the measurement data in the dataset. 17 

4 Result and discussion 18 

Following the model building, the goodness of regression and root mean square error between the model output concentrations 19 

and the reference monitor concentrations are evaluated for all calibration model approaches. The plots for the PM2.5, PM10, O3, CO, 20 

NO2 and SO2 illustrating the time series and goodness of fit of the models are provided in the Figure 9 - Figure 14. The R2 and 21 

RMSE values are listed in Table 2 – Table 5. 22 

4.1 Parameters of the model 23 

For the BP and GA-BP models, the parameters are the functions for the hidden layer and output layer, the type of the hidden layer, 24 

the number of iteration times, and the number of the nerve units(Wang et al., 2013). The functions for the hidden layer and output 25 

layer in this study respectively are the default tansig and the purelin functions. With the more complex type of the hidden layer 26 

and less obvious improvement, the hidden layer is single type to achieve the goal of work efficiency.  27 

To determine the best number of iteration times and nerve units, the measurement from the LCS and reference monitor between 1 28 

March 2021 and 30 June 2021 is used. The number of iteration time is optimized using the mean squared error (MSE) between the 29 

model value from the model and the reference monitor output value. The tendency of the MSE is shown in Figure 6. The training 30 

is performed for 500 iterations. It is observed that the MSE decreases with the number of iteration time increasing, the rate of 31 
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decrease and the variation of the MSE is negligible beyond 100 iterations. More iterations incur higher computational cost for the 1 

training and small performance improvement. There is also the risk of overtraining resulting in poor generalization capability.  2 
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Figure 6. The MSE with the number of iterations. 4 

 5 
Figure 7. The R2 with different node number of the neuron for the pollutants. 6 

The node number of the nerve units is determined by the contrast results of determination coefficient R2 for different gas and PM 7 

pollutants within 1 March 2021 and 30 June 2021. The results are shown in Figure 7. The R2 is improved as the number of nerve 8 

units increasing. The rate of increase and the variation of R2 is negligible beyond 70 units. More units incur higher computational 9 

cost and time for the training and small performance improvement.  10 

For the RF model, the number of tree is determined by the contrast results of determination coefficient R2 for different gas pollutants 11 

within 1 March 2021 and 30 June 2021. The results are shown in Figure 8. The R2 is improved as the number of tree increasing. 12 

The rate of increase and the variation of R2 is negligible beyond 20. The terminal node is specified using a maximum number of 13 

sub-node points per node. The R2 is also improved as the number of sub-node increasing under the same tree number. The rate of 14 

increase and the variation of R2 is negligible beyond 100. More number of the tree or the sub-node incur higher computational cost 15 

and time for the training and small performance improvement.  16 
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 1 
Figure 8. The R2 with different tree number of the RF model for the pollutants. 2 

4.2 Measurement results of PM 3 

With the results from 1 March 2021 to 28 February 2022 and according the trend of the ambient temperature, shown in Figure 1, 4 

the whole data is divided into three segments. The three segments (I, II, and III) separately are within 1 March 2021 and 30 June 5 

2021, 1 July 2021 and 31 October 2021, 1 November 2021 and 28 February 2022. The time series data and regressions of five 6 

modes for PM from reference monitor and LCS calibration output are shown in Figure 9 and Figure 10. With the purpose of 7 

avoiding over-fit in the five models, the randomly divide parameters of train ratio and test ratio are 80% and 20%, respectively. 8 

 9 
Figure 9. Time series and regressions comparing the reference monitor PM2.5 data (black) to five calibration model PM2.5 results. Where 10 
red, blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series 11 
data of the measurement period. The right panel (b) shows the regressions of the five calibration models. 12 

 13 

As shown in Figure 9 (a) and Figure 10 (a), the general tendency of the data fluctuation between the reference monitor and the RF, 14 

MLR, KNN, BP, GA-BP based algorithm of the LCS are consistent with each other.  The best performance is RF model, the next 15 

are KNN, BP and GA-BP, the worst is MLR. The regressions consistence between the reference data and the five model data are 16 

also shown in Figure 9 (b) - Figure 10 (b), and listed in Table 2.  17 

The R2 of RF for the PM is better than 0.98. The R2 of MLR for the PM is less than 0.91, and even less than 0.7. The R2 of the 18 

other three model are within 0.86 and 0.98. The performance of different calibration models for the PM against reference monitor 19 

is also evaluated using RMSE, and the results are listed in Table 3. 20 

Using the data listed in Table 3, the RMSE values from the first (I) and third (III) stages are large than the one from the second (II) 21 

stage, the main reason maybe the large fluctuation range of the PM for the climatic factors in winter and spring resulting in the 22 

poor model fit. The mean RMSE values of PM2.5 between the reference data and the RF, MLR, KNN, BP, GA-BP-based algorithms 23 
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dada are calculated as 3.96 μgm-3, 16.16 μgm-3, 9.48 μgm-3, 10.67 μgm-3 and 10.74 μgm-3, respectively. The mean RMSE values 1 

of PM10 between the reference data and the RF, MLR, KNN, BP, GA-BP-based algorithms dada are calculated as 7.37 μgm-3, 2 

28.90 μgm-3, 18.50 μgm-3, 18.04 μgm-3 and 18.17 μgm-3, respectively.  3 

 4 
Figure 10. Time series and regressions comparing the reference monitor PM10 data (black) to five calibration model PM10 results. Where 5 
red, blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series 6 
data of the measurement period. The right panel (b) shows the regressions of the five calibration models. 7 

 8 
Table 2. Performance of different calibration models for the PM2.5 and PM10 against reference monitor. The determination coefficient R2 9 
(higher is better, maximum of 1) of different calibration models (RF, MLR, KNN, BP, GA-BP) versus reference monitor. 10 

R2 

Model 

PM2.5 PM10 

Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ 

RF 0.983 0.989 0.987 0.995 0.981 0.987 

MLR 0.682 0.689 0.850 0.910 0.742 0.850 

KNN 0.898 0.937 0.927 0.968 0.882 0.927 

BP 0.868 0.916 0.912 0.976 0.859 0.912 

GA-BP 0.863 0.915 0.912 0.975 0.863 0.912 

 11 
Table 3. Performance of different calibration models for the PM2.5 and PM10 against reference monitor. The RMSE errors (lower is better) 12 
of different calibration models (RF, MLR, KNN, BP, GA-BP) versus reference monitor. 13 

         RMSE 

Model 

PM2.5 (μgm-3) PM10 (μgm-3) 

Ⅰ Ⅱ Ⅲ MEAN Ⅰ Ⅱ Ⅲ MEAN 

RF 4.03  2.36  5.49  3.96 10.37  4.55  7.19  7.37 

MLR 17.18  12.63  18.68  16.16 45.05  16.43  25.22  28.90 

KNN 9.73  5.67  13.05  9.48 27.08  11.14  17.29  18.50 

BP 11.09  6.56  14.35  10.67 23.10  12.15  18.88  18.04 

GA-BP 11.27  6.61  14.35  10.74 23.65  11.99  18.87  18.17 

 14 

4.3 Measurement results of gas pollution 15 

With the results from 1 March 2021 to 28 February 2022 and according the trend of the ambient temperature, shown in Figure 1, 16 

the whole data is also divided into three same segments as section 4.2. The time series data and regressions of five modes for gas 17 

pollution from reference monitor and LCS calibration output are shown in Figure 11 - Figure 14. With the same purpose of avoiding 18 

over-fit in the five models, the randomly divide parameters of train ratio and test ratio are also 80% and 20%, respectively. 19 

As shown in Figure 11 (a) - Figure 14 (a), the general tendency of the data fluctuation between the reference monitor and the RF, 20 

MLR, KNN, BP, GA-BP based algorithm of the LCS are consistent with each other.  The best performance is RF model, the next 21 

are KNN, BP and GA-BP, the worst is MLR. The regressions consistence between the reference data and the five model data are 22 

also shown in Figure 11 (b) - Figure 14 (b), and listed in Table 4. The RMSE values between the reference data and the five model 23 

data are listed in Table 5. 24 
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 1 

Table 4. Performance of different calibration models for the gaseous pollutant (SO2, CO, NO2, O3) against reference monitor. The 2 
determination coefficient R2 (higher is better, maximum of 1) of different calibration models (RF, MLR, KNN, BP, GA-BP) versus 3 
reference monitor. 4 

R2 

Model 

O3 CO NO2 SO2 

Ⅰ Ⅰ Ⅰ Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ 

RF 0.995 0.994 0.980 0.989 0.989 0.978 0.981 0.981 0.967 0.962 0.969 0.939 

MLR 0.900 0.898 0.745 0.729 0.807 0.710 0.456 0.530 0.570 0.065 0.333 0.029 

KNN 0.965 0.960 0.874 0.921 0.934 0.861 0.866 0.878 0.786 0.686 0.797 0.447 

BP 0.932 0.927 0.829 0.837 0.858 0.815 0.756 0.775 0.716 0.332 0.609 0.278 

GA-BP 0.935 0.934 0.831 0.841 0.871 0.816 0.742 0.782 0.708 0.341 0.622 0.286 

 5 

For the O3 model, the R2 of RF is better than 0.98. The R2 of MLR is less than 0.90, and even less than 0.8. The R2 of the other 6 

three models are within 0.82 and 0.97. The performance of different calibration models for the O3 against reference monitor is also 7 

evaluated using RMSE, and the results are listed in Table 5. Using the data listed in Table 5, the RMSE values from the first (I) and 8 

third (III) stages have little difference with the one from the second (II) stage, indicating the O3 electrochemical sensor suitable for 9 

the ambient ozone measurement. The mean RMSE values of O3 between the reference data and the RF, MLR, KNN, BP, GA-BP-10 

based algorithms dada are calculated as 4.06 μgm-3, 16.07 μgm-3, 10.23 μgm-3, 13.35 μgm-3 and 13.0 μgm-3, respectively.  11 

 12 

Figure 11. Time series and regressions comparing the reference monitor O3 data (black) to five calibration model O3 results. Where red, 13 
blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series data of 14 
the measurement period. The right panel (b) shows the regressions of the five calibration models. 15 

 16 
Figure 12. Time series and regressions comparing the reference monitor CO data (black) to five calibration model CO results. Where 17 
red, blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series 18 
data of the measurement period. The right panel (b) shows the regressions of the five calibration models. 19 

 20 
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For the CO model, the R2 of RF is better than 0.97. The R2 of MLR is less than 0.81, and even less than 0.7. The R2 of the other 1 

three model are within 0.81 and 0.94. The performance of different calibration models for the CO against reference monitor is also 2 

evaluated using RMSE, and the results are listed in Table 5. The RMSE values from the first (I) and third (III) stages have little 3 

difference with the one from the second (II) stage, indicating the CO electrochemical sensor also suitable for the ambient CO 4 

measurement. The mean RMSE values of CO between the reference data and the RF, MLR, KNN, BP, GA-BP-based algorithms 5 

dada are calculated as 0.04 mgm-3, 0.15 mgm-3, 0.10 mgm-3, 0.12 mgm-3 and 0.12 mgm-3, respectively.  6 

 7 
Table 5. Performance of different calibration models for the gaseous pollutant (SO2, CO, NO2 and O3) against reference monitor. The 8 
RMSE errors (lower is better) of different calibration models (RF, MLR, KNN, BP, GA-BP) versus reference monitor. 9 

  RMSE 

Model 

O3 (μgm-3) CO (mgm-3) NO2 (μgm-3) SO2 (μgm-3) 

Ⅰ Ⅱ Ⅲ MEAN Ⅰ Ⅱ Ⅲ MEAN Ⅰ Ⅱ Ⅲ MEAN Ⅰ Ⅱ Ⅲ MEAN 

RF 4.05  4.06  4.08  4.06 0.02 0.03 0.06 0.04 2.88  2.88  3.99  3.25 0.83  0.64  1.68  1.05 

MLR 17.79  16.42  14.00  16.07 0.12 0.12 0.23 0.15 14.54  13.54  13.61  13.90 3.53  2.69  5.37  3.86 

KNN 10.57  10.28  9.84  10.23 0.06 0.07 0.16 0.10 7.25  6.93  9.61  7.93 2.06  1.49  4.05  2.53 

BP 14.67  13.91  11.46  13.35 0.09 0.10 0.18 0.12 9.75  9.37  11.07  10.06 2.98  2.06  4.63  3.22 

GA-BP 14.40  13.19  11.41  13.00 0.09 0.10 0.18 0.12 10.02  9.21  11.21  10.15 2.97  2.03  4.60  3.20 

 10 

For the NO2 model, the R2 of RF is better than 0.96. The R2 of MLR is less than 0.60, and even less than 0.5. The R2 of the other 11 

three model are within 0.70 and 0.90. The performance of different calibration models for the NO2 against reference monitor is 12 

also evaluated using RMSE, and the results are listed in Table 5. The RMSE values from the first (I) and third (III) stages have little 13 

difference with the one from the second (II) stage, indicating the NO2 electrochemical sensor still suitable for the ambient NO2 14 

measurement. The mean RMSE values of NO2 between the reference data and the RF, MLR, KNN, BP, GA-BP-based algorithms 15 

dada are calculated as 3.25 μgm-3, 13.90 μgm-3, 7.93 μgm-3, 10.06 μgm-3 and 10.15 μgm-3, respectively.  16 

 17 
Figure 13. Time series and regressions comparing the reference monitor NO2 data (black) to five calibration model NO2 results. Where 18 
red, blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series 19 
data of the measurement period. The right panel (b) shows the regressions of the five calibration models. 20 
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 1 
Figure 14. Time series and regressions comparing the reference monitor SO2 data (black) to five calibration model SO2 results. Where 2 
red, blue, magenta, olive and navy represent RF, MLR, KNN, BP, GA-BP, respectively. The left panel (a) shows the whole time series 3 
data of the measurement period. The right panel (b) shows the regressions of the five calibration models. 4 

 5 

For the SO2 model, the R2 of RF is better than 0.93. The R2 of MLR is less than 0.40, and even less than 0.1. The R2 of the other 6 

three model are within 0.27 and 0.80. The performance of different calibration models for the SO2 against reference monitor is 7 

also evaluated using RMSE, and the results are listed in Table 5. The RMSE values from the first (I) and third (III) stages have little 8 

difference with the one from the second (II) stage, indicating the SO2 electrochemical sensor with the RF calibration can be used 9 

for the ambient SO2 measurement. The mean RMSE values of SO2 between the reference data and the RF, MLR, KNN, BP, GA-10 

BP-based algorithms dada are calculated as 1.05 μgm-3, 3.86 μgm-3, 2.53 μgm-3, 3.22 μgm-3 and 3.20 μgm-3, respectively.  11 

As shown in Figure 11 - Figure 14 and listed in Table 4 – Table 5, the models (except the RF model) perform poorly for SO2, 12 

especially during the spring and winter. There maybe three reasons for this phenomenon. The first one is the cross interference 13 

effect from NO2 and O3. The second one is the reaction products (SO3) dissolved in the electrolyte, which can affect the ion 14 

concentration. The last one is the stability of electrode material, which is easily affected by external interference.  15 

5 Conclusion 16 

A low-cost air quality monitoring system based on RF, MLR, KNN, BP, GA-BP algorithms are proposed. The system can measure 17 

PM2.5, PM10, SO2, NO2, CO and O3, simultaneously. The PM prediction model is proposed by taking the particle counters x0.5, x1.0, 18 

x2.5, x5.0, x10.0 of the sensors, ambient temperature (T) and relative humidity (RH) as input and the concentrations Ypm2.5 and Ypm10 of 19 

PM2.5 and PM10 measured by the reference instrumentation as output. The gas pollutant predictions model is also proposed by 20 

taking results of the electro-chemical sensors, T and RH as input and the measurements by the reference monitors as output. The 21 

experimental results show that the R2 of RF for the PM is better than 0.98; the R2 of MLR for the PM is less than 0.91; the R2 of 22 

the other three model are within 0.86 and 0.98. The mean RMSE values of PM2.5 and PM10 between the reference data and the RF, 23 

MLR, KNN, BP, GA-BP-based algorithms dada are calculated as 3.96 μgm-3, 16.16 μgm-3, 9.48 μgm-3, 10.67 μgm-3, 10.74 μgm-3, 24 

and 7.37 μgm-3, 28.90 μgm-3, 18.50 μgm-3, 18.04 μgm-3, 18.17 μgm-3, respectively. For the gas pollutants (SO2, NO2, CO and O3), 25 

the R2 of RF for is better than 0.93; the R2 of KNN, BP and GA-BP for the gas pollutants (SO2, NO2, CO and O3) is within 0.27 to 26 

0.97; the R2 of MLR for the NO2, CO and O3 is within 0.46 to 0.90, but for SO2 less than 0.40, and even less than 0.1. The mean 27 

RMSE values of O3, CO, NO2 and SO2 between the reference data and the RF, MLR, KNN, BP, GA-BP-based algorithms dada 28 

are calculated as 4.06 μgm-3, 16.07 μgm-3, 10.23 μgm-3, 13.35 μgm-3, 13.0 μgm-3; 0.04 mgm-3, 0.15 mgm-3, 0.10 mgm-3, 0.12 mgm-29 

3, 0.12 mgm-3; 3.25 μgm-3, 13.90 μgm-3, 7.93 μgm-3, 10.06 μgm-3, 10.15 μgm-3; and 1.05 μgm-3, 3.86μgm-3, 2.53 μgm-3, 3.22 μgm-30 

3 and 3.20 μgm-3, respectively. These measurements are consistent with the national environmental protection standard requirement 31 
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of China. Therefore, the low-cost multi-parameter air quality monitoring system, based on RF, MLR, KNN, BP, GA-BP algorithms, 1 

can be used to predict the concentrations of PM and gas pollution. In the next research, we will focus on improving the 2 

generalization of the algorithms in more applications, and the performance of the SO2 sensor. 3 
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